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A computational approach is described that can predict the VDss of new compounds in humans, with an
accuracy of within 2-fold of the actual value. A dataset of VD values for 384 drugs in humans was used to
train a hybrid mixture discriminant analysis-random forest (MDA-RF) model using 31 computed descriptors.
Descriptors included terms describing lipophilicity, ionization, molecular volume, and various molecular
fragments. For a test set of 23 proprietary compounds not used in model construction, the geometric mean
fold-error (GMFE) was 1.78-fold ((11.4%). The model was also tested using a leave-class out approach
wherein subsets of drugs based on therapeutic class were removed from the training set of 384, the model
was recast, and the VDss values for each of the subsets were predicted. GMFE values ranged from 1.46 to
2.94-fold, depending on the subset. Finally, for an additional set of 74 compounds, VDss predictions made
using the computational model were compared to predictions made using previously described methods
dependent on animal pharmacokinetic data. Computational VDss predictions were, on average, 2.13-fold
different from the VDsspredictions from animal data. The computational model described can predict human
VDss with an accuracy comparable to predictions requiring substantially greater effort and can be applied
in place of animal experimentation.

Introduction

The optimization of human pharmacokinetic behavior of new
drugs is an important activity in the drug discovery process.
Pharmacokinetics need to be appropriate for the target indication;
appropriate pharmacokinetics lead to appropriate dosing regi-
mens, which in turn yield greater patient compliance and
ultimately improved efficacy. To ensure that new drugs offer
convenience in dosing, many pharmaceutical companies will
investigate the metabolism and pharmacokinetics of new chemi-
cal entities, in parallel to their efforts in medicinal chemistry
and pharmacology. The half-life of a new drug will be a major
factor in determining the dosing frequency. Compounds with
short half-lives are more likely to require multiple administra-
tions per day while those with longer half-lives tend to be more
amenable to once-per-day dosing. The two pharmacokinetic
parameters that determine the half-life are clearance (a measure
of the rate at which the drug is removed from the body) and
the volume of distribution (a measure of the extent of distribu-
tion from the plasma to the tissues).

The volume of distribution of a drug (VD at steady state or
VDss throughout this work) is a function of the extent of drug
partitioning into tissues vs that which remains within the plasma.
Greater tissue partitioning, which requires that the drug can
penetrate into tissues as well as bind reversibly to tissue
components, will yield a greater VDss. With rare exceptions,
the binding of drug to tissue components represents nonspecific
binding to various macromolecular structures such as proteins,
phospholipid membranes, etc. Nonspecific binding interactions

are largely dictated by general physicochemical attributes of
the drug, rather than specific pharmacophores. Thus, volume
of distribution and physicochemical properties should be cor-
related in some manner, as has been demonstrated in previous
reports by us and others.1-3

In this paper, we describe a computational approach to the
prediction of human volume of distribution. Other methods to
predict volume of distribution in humans have required the use
of animal pharmacokinetic data.4-7 Several models, reported
in the literature, have taken either a fully computational approach
or a hybrid approach2,8,9 (i.e. partly experimental and partly
computational) in order to predict VDss; these approaches do
so either directly9-12 or indirectly,9 via the fraction unbound in
tissues. Gathering such data can be resource intensive, requiring
the synthesis of tens of milligrams of test compound, dosing
and blood sampling from laboratory animals, the development
of a sensitive and selective bioanalytical method (to measure
the drug in plasma), and analysis of these plasma samples. A
fully computational method does not require any synthesis or
animal experimentation but only requires the time needed to
draw the chemical structure, and the computer time for the
required calculations. Furthermore, a computational approach
can be applied to virtual chemical libraries. The method
described in this paper approaches the accuracy of other
previously described VD prediction methods and should prove
to be a useful tool in drug discovery efforts while reducing the
use of animals in research.

Results and Discussion

Volume of distribution is not a true physical volume, but
rather a useful mathematical construct that describes the behavior
of compounds in the body with regard to the degree of
partitioning between the plasma compartment and the rest of
the body. However, the VD value, determined from concentra-
tion-time curves for any given drug, is influenced by many
physicochemical and physiological parameters, such as lipo-
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philicity, pKa, tissue binding, and plasma protein binding.1-3

Nevertheless, the question was posed as to whether such a
complex construct, assuming a passive diffusion behavior, could
be modeled directly and quantitatively using only computed
parameters. The question of specific interactions of a drug with
tissues or subcellular organelles, as well as with active transport
systems, is not a trivial one, and in most cases the answer is
not known. However, the assumption was made that in most
cases a passive diffusion model would hold, and therefore a
large data set of human VD data was gathered in an attempt to
explore this approach.

Preliminary Models. Computed descriptors were identified
and classified according to their covariance, and these were in
turn subjected to multiple linear regression (MLR) forming self-
consistent parameter sets (i.e. those that did not contain
redundancies or were constant). The initial correlations obtained
were modest (R2 in the range of 0.5-0.6), but the diversity of
the descriptors was significant and they were physicochemically
and statistically meaningful. Examination of the results obtained
with different models revealed that although the models
exhibited comparable performance, the specific predictions for
individual compounds were noticeably different, with the models
predicting different subsets well. It was therefore reasoned that
the complexity and diversity of effects contributing to VDss

might not be amenable to reduction to a multiple linear approach
with relatively few parameters.

The predictive performance of a model generated by the
Cubist program13 was assessed, in which piecewise multiple
linear models (MLR) are fit in the nodes of a decision tree. A
“committee” of multiple trees is built and averaged to produce
a final prediction, using a boosting technique in which each
subsequent tree attempts to improve the predictions from the
previous trees. Following this approach, and utilizing a training
set of approximately 300 compounds, several committee models
were developed. These generally consisted of 18-20 trees and
produced models that hadR2 of about 0.88 andQ2 of about
0.80. This preliminary result was positive, and further testing
of the prediction ability of these models confirmed the high
likelihood that a reasonably good VDssmodel could be derived
utilizing only computed parameters. However, in building these
preliminary models, some of the parameters used may be termed
“secondary”, i.e., they were computed from other in-house
models, and, more importantly, some of the VD data were from
oral administration of the drug or obtained from secondary
sources. Having obtained reasonable confidence that a compu-
tational model for VD was feasible, we decided to improve the
approach. We therefore sought to expand and refine the data
set, more thoroughly assess computed parameters (seeking to
include only those parameters that can be deemed primary), and
to assess multiple statistical modeling procedures in addition
to the previously applied MLR and Cubist approaches.

Construction of the Hybrid Mixed Discriminant Analysis -
Random Forest Model. A more extensive literature mining
effort produced a set of 384 compounds containing exclusively
iv clinical data, which were included only after careful scrutiny
of the original literature (see Experimental Section). For a small
number of compounds VDâ, i.e., the volume of distribution
during the terminal elimination phase, rather than VDss, was
used. The next step was to eliminate the secondary computed
parameters mentioned above. However, it is not straightforward
to decide whether a parameter can be defined as primary since
the calculation can be derived from statistical analysis of
thousands of fragmental values. Nevertheless we used the
stability and availability of the parameters as one of the guiding

factors, keeping the quality and breadth of VDss data as the
primary factor.

The structures for the 384 compounds were generated as
described in the Experimental Section, and 1149 parameters
were calculated for each molecule. The matrix of 384× 1149
data points was then analyzed using various statistical ap-
proaches. These included Random Forests (RF), Cubist, Partial
Least Squares (PLS), Multiple Linear Regression (MLR) alone
and in conjunction with Simulated Annealing (SA-MLR), and
Principal Component Regression (PCR). Previous findings,2-3

physicochemical intuition, and statistical measures were used
to assess the likely influence of the chosen computed parameters
on the MLR and PCR ability to predict VDss.

After elimination of descriptors with zero variance, 952
parameters remained. We further reduced the set by eliminating
the descriptors with high pairwise correlations with other
descriptors in the set, using a cutoff (R2) of 0.8, and retained
the member of each pair that was more easily computed. These
steps left 550 descriptors that were used as input for the SA-
MLR algorithm.

The SA-MLR algorithm (see Experimental Section) provided
a subset of 20 descriptors representing the minimal fitness value
encountered during the analysis and using a MLR approach as
scoring function. This subset of 20 descriptors was combined
with a subset of 16 descriptors selected independently based
on their likely influence on VDss. The combined subset
contained 31 unique descriptors. This subset of 31 unique
descriptors was used in model generation, and they are reported
in Table 1.

The MLR approach, with parameters derived from simulated
annealing and physicochemical intuition, proved reasonably

Table 1. The 31 Descriptors Used in the Present Model

descriptor description

frac_anion_7 ACDLabs fraction anionic at pH 7
frac_cation_7 ACDLabs fraction cationic at pH 7
rule12 *:,)[c,C][N;H0,H1][C;H1,H2,H3]
rule39 [!c;!C]∼[!c;!C;H1]
rule40 [!c;!C]∼N
rule64 [!H]∼[!H]( ∼[!H])( ∼[!H]) ∼[!H]
rule85 [c,n]1o[c,n][c,n][c,n]1
rule91 [CH2,CH3]∼[!C;!c]∼[CH2,CH3]
rule98 [CH2](∼*∼[N,n])∼*
rule108 [CH2]∼[N,n]∼*
rule114 [CH3][!H][CH2][!H]
rule155 [N,n]),:[C,c;H1][N,n;H0,H1]
rule187 [O,o]∼[C,c](∼[C,c])∼[C,c]
rule193 [O]∼[S,P](∼O)(∼O)[!O]
rule205 [R;N,n,O,o,S,s]
rule211 [S,s]
rule288 I
rule308 N∼C∼O
rule347 S∼[!H]( ∼[!H]) ∼[!H]
isis75 A!N$A
isis84 NH2
isis92 OC(N)C
isis96 5M RING
isis128 ACH2AAACH2A
INTHB measure of internal hydrogen bonding ability
PEOE_PC_+ total positive charge (MOE v. 2004.3)
PEOE_RPC_+ relative positive charge (MOE, v. 2004.3)
ClogP calculated logP (BioByte, ClogP v 4.1)
dXp10 simple difference chi index using order 10 paths

(molconnz)
Gmin smallest e-state value (molconnz)
nPag22 vertex alpha-gamma count (molconnz)

a The following descriptors were identified by simulated annealing:
frac_anion_7, frac_cation_7, rule39, rule64, rule91, rule108, rule114,
rule155, rule288, isis75, isis84, isis92, isis96, isis128, INTHB, ClogP,
dXp10, gmin, nPag22.
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successful in indicating subsets of relevant variables. While the
correlation observed with 31 of the computed parameters was
not very high (R2 ) 0.69,Q2 ) 0.61, log VDssas the dependent
variable), randomization tests (as well as the independent test
sets) demonstrated that this approach was fairly robust, satis-
factorily predicting VDssvalues for “unknown” compounds. For
example, we processed an independent test set of 23 proprietary
compounds (all with clinical iv pharmacokinetic data), and
obtained a GMFE of 2.01; this compares favorably with the
GMFE for the training set (N ) 384), which was 1.88.

It is also important to note that the continuous parameters
described in Table 1 had MLR coefficients that made physi-
cochemical sense (see Supporting Information). For example,
it would be expected that ClogP would have a positive
coefficient since a high lipophilicity was reported to directly
correlate with VDss. Similarly the cationic fraction of the
molecule at pH 7 would also be expected to correlate directly
as well.2,3 Furthermore, since the tight binding of anions to
serum albumin tends to reduce VDss values, we expected that
the anionic fraction of the molecule (at pH 7) to inversely
correlate with VDss; this was indeed the case. Similarly, the
intramolecular hydrogen-bond descriptor (INTHB) should be
directly correlated with VDss, owing to the reduction of the polar
surface area that would allow a better penetration through
membranes, and the two partial charge descriptors (PEOE_PC_+
and PEOE_RPC_+) should be, on polarity arguments, inversely
correlated with the dependent variable; this was observed as
well. Another parameter, originally identified by the SA-MLR
approach i.e., the E-state of quaternary N atoms, was eventually
dropped upon further analysis, thus reducing the number of
parameters to 19.

Considering that the “chemical intuition/MLR” approach
overlapped with the SA results, we contend that the choice of
the 31 parameters is appropriate, even though, in some instances,
a particular chemotype may have had a large impact, as in the
case, for example of rule 288 (count of I atoms). However, when
8 out of the 10 parameters that did not reach 95% significance
in the MLR (see Supporting Information) were eliminated on
the basis of their statistical significance in a stepwise-regression
analysis, rule 288 was still retained as significant, and the very
high significance of ClogP and fraction ionized at pH 7 (both
anionic and cationic) was confirmed. The isis 75 and isis 92
fragments were retained because they acquired significance in
the 23 parameter equation. The statistical parameters and the
predictive tests performed on the latter equation were essentially
identical to the equation using 31 parameters.

However, due in part to the paucity of VDssdata in the upper
end of the range of the values, and to the complexity of the
target variable being modeled, a significant curvature in the plot
of predicted vs experimental VDss was observed (data not
shown), with the latter being underpredicted at high values.
Similarly, efforts using PLS and Cubist-based approaches,
despite a fairly broad exploration of the options offered by
Cubist and the use of variables not included in the subset of
31, did not lead to a significant improvement over the MLR
model.

A two-stage statistical approach, using mixture discriminant
analysis (MDA) as the first step and random forests (RF) as
the second was attempted using the 31 descriptors. The hybrid
model was developed to overcome the bias toward lower VDss

values in the predictions from the single RF model, which is
due to the fact that the number of compounds with lower VDss

values significantly outweighs the number of compounds with
larger VDssvalues in the training set. The resulting hybrid model

performs somewhat better than the pure RF model in predicting
the independent clinical compounds (with GMFE 1.78 vs 2.03)
especially in the case of compounds with relatively high VD
values. The overall errors in cross validation of the training set
are roughly the same (average GMFE∼ 2.0). By first defining
a low volume of distribution as<10 L‚kg-1 and a high volume
of distribution asg10 L‚kg-1, a two-category classification
model was pursued. Mixture discriminant analysis (MDA) was
applied at the first step and random forests (RF) at the second.
Separate random forest regression models on the low and high
VDss subsets of compounds were constructed. To improve the
predictive performance on compounds near the 10 L‚kg-1

boundary, the RF model for high VDss compounds was built
on compounds with VDss g 5 L‚kg-1, and the RF model for
low VDss compounds was built on all compounds. All random
forest modeling was done on the log VDss scale. In application
of this model for predicting VD of a new compound, it is first
classified as a low or high VDss compound using the MDA
classification model. The corresponding RF regression model
is then used to provide the predicted VDss value. A 500-tree
RF-model for each category was built resulting in a total of
1000 trees overall. The model yielded aR2 value of 0.91 for
the training set of 384 compounds. The observed geometric
mean fold-error (GMFE) calculated for the (linear) VDss data
used in the training set was 1.37 ((1.7%), i.e., well below a
generally accepted threshold value of two.4,7 The plot of the
predicted vs observed VDss value for the training set is shown
in Figure 1. An increase in the number of trees did not prove
fruitful, and the above results prompted testing of the predictive
ability of the model using several approaches. A comparison
of summary statistics for the predictions of VD on a test set of
23 proprietary by MDA-RF, RF, and MLR models is listed in
Table 2. These data support the notion that the hybrid MDA-
RF model yields the highest performance.

Performance of the Hybrid MDA-RF Model in the
Prediction of Human VDss. A 10-fold cross validation was
conducted on the training data set with the MDA-RF model.
The 384 compounds were randomly divided into 10 groups with
roughly equal sizes. The model and predictions were then run
10 times, each time with a model built on 9 of the 10 groups
combined and predictions made on the group that was not in
the model. The process was iterated so that each group

Figure 1. Plot of predicted VDss vs observed VDss for the 384
compounds in the training set. The dotted lines represent the 2-fold
error limits.
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has been independently predicted once. The results are sum-
marized in Table 3.

A leave-class-out (LCO) approach, as described in the
Experimental Section, was applied to test whether any class
would be poorly predicted if it had not been included in the
model, a priori. This can be thought of as a “simulation” of
real-life prediction work when a new structural class is at hand
and for which no experimental data is available. The results of
LCO are shown in Table 4. While some classes, once excluded
from the training set, did not yield a GMFE at or below 2, each
member of any of the classes was predicted well within a factor
of 2 using all training set data (N ) 384) and the weighed
average was 1.91, across all classes, in the LCO test.

A third, and perhaps more stringent, test was represented by
the use of proprietary clinical iv VDssdata encompassing a fairly
wide range of structural classes and covering a range of VDss

data equal to 96% of the range of data in the training set. This
test sought to compare, among them, the animal PK-based
approaches, described by Obach et al.,4 to the physicochemical
approach reported by Lombardo et al.2,3 and the present
computational model. The results, shown in Table 5, attest to
an excellent predictive performance of the present method,
yielding a GMFE value comparable to methods based on (the
much more expensive and time-consuming) in vivo data. It also

showed a better performance than the approach using the
correlation between physicochemical data and fraction unbound
in tissues as calculated using the Oie-Tozer equation.14 The
different number of compounds in each set is due to the lack of
availability of the corresponding animal data for the PK-based
approaches and to the applicability of the physicochemical
model to basic and neutral compounds only. The 18 compounds
used in the latter case and the 20 compounds used to test the
animal PK-based methods were part of the set of 23 compounds
used in the present work, and so there was a complete overlap
of the latter set with the other two. The plot of the predicted vs
observed VDss value for the test set is shown in Figure 2, and,
in analogy with the plot for the training set, the dashed lines
represent the factor of two thresholds.

In a fourth test of model performance, the predictions of
human VDss made for over 70 compounds, using previously
described animal-based prediction methods4 vs predictions made
using the present MDA-RF model were compared. The com-
putational model was compared to each of the animal-based
methods described as well as to the average of all three of them,
as shown in Table 6. It can be seen that the predictions using
the MDA-RF model, using nothing more than a structural input
to calculate a VDss value, are on average at about a factor of 2
from the experimental PK-based predictions made for these
compounds. Similar to the previous analysis on clinical data,
the number of compounds reported for the allometric scaling

Table 2. Summary Statistics for the Prediction of VD Values for 23 Proprietary Compounds Using the MDA-RF Model as Compared to RF and MLR
Models

model GMFEa %CVb

Hybrid Mixed Discriminant Analysis-Random Forest 1.78 11.4
Random Forest only 2.03 15.0
multiple linear regression (all 31 combined descriptors) 2.01 11.4
multiple linear regression (19 descriptors from simulated annealing) 2.05 10.1
multiple linear regression (16 descriptors based on physicochemical intuition) 2.48 16.2

a GMFE: geometric mean-fold errorb %CV: percent coefficient of variation of GMFE

Table 3. Summary Statistics of the Cross-Validation of the 384 Compound Training Set

group

1 2 3 4 5 6 7 8 9 10

sample size 38 39 39 39 39 38 38 38 38 38
prediction GMFE 1.83 1.81 2.08 2.17 2.12 2.21 2.24 2.1 1.93 2.02
%coeff of variation error of GMFE 7.3% 7.5% 9.2% 12.2% 13.4% 14.0% 13.2% 12.5% 9.2% 10.9%

Table 4. Leave-Class-Out Analysis on the 384 Compounds Training Set

structural class analogues in class GMFE %CV

steroids 14 1.71 13.1
â-blockers 16 1.70 9.3
fluoroquinolone antibioticsa 10 2.94 9.6
NSAIDsa 7 2.67 8.7
cephalosporines 17 1.46 5.7
benzodiazepines 15 1.61 7.2
tricyclic antidepressants 7 1.85 10.8
morphine-likea 10 2.26 21.5

a All compounds were predicted with a GMFE< 2 in the general model
(N ) 384).

Table 5. Prediction Accuracy vs Clinical iv Data

method
no. of proprietary

compounds GMFE

average of PK-based modelsa 20 1.61
experimental physicochemical modelb 18 2.26
computational method (MDA-RF)c 23 1.78

a Reference 4. Average of two or three methods.b Reference 3. This
prediction test used the same compounds as in the previous row with the
exception of two acidic compounds not amenable to prediction via the
method reported in ref 3.c This work. The set of 23 compounds includes
all 20 (or 18) compounds used in the two studies reported above. The
coefficient of variation on the GMFE for the MDA-RF model was 11.4%.

Figure 2. A. Plot of predicted VDss vs observed VDss for the 23
compounds in the clinical test set using the MDA-RF model. The dotted
lines represent the 2-fold error limits.
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approach is slightly lower than the other methods due to lack
of an allometric prediction for three of the compounds used.
The average value reported is also based on only two methods
for the same three compounds.

Conclusion

We have developed a computational VDss model based on
carefully checked clinical pharmacokinetic data for 384 drugs
and tested its predictive ability using several statistical ap-
proaches, including an external test set. The ability of this model
to accurately predict human VD is essentially identical to
previously described animal-based approaches, but the method
offers a suitable way to spare costly synthetic and analytical
resources as well as to reduce the use of animals, therefore
positively impacting on its broader implications. Only a
structural input is required, which makes the method amenable
to virtual screening and certainly useful for a drastic reduction
of in vivo experiments. Our work will continue with tests and
modifications of the current model based on newer data, and
we will also explore more in detail the impact of structural
fragments on the prediction outcome.

Experimental Section

Volume of Distribution Data. The volume of distribution data
for the 384 compounds used in the training set were gathered by
examining more than 600 original references. All data are from
reported studies in human, and in all cases the drug was adminis-
tered intravenously. We considered with particular attention the
bioanalytical techniques used for plasma drug concentration de-
termination, e.g. whether the parent compound was identified and
followed during the course of the study, by what means, whether
total radioactivity was used, and other potential issues. If each of
those concerns could not be satisfactorily resolved, the data would
not be accepted. In about 10% of the cases the VDss values were
calculated from concentration vs time plots reported by the original
authors, that were digitized to yield concentration-time data
(www.digitizeit.de) or from a data table, using WinNonLin v. 3.2
(Pharsight Co., Mountain View, CA). In all cases the obtained PK
parameter values, other than VDss, e.g. Cl and/or VDâ, were
compared with the reported values to ensure quality in the
digitization and calculation steps. About 10% of the data used were
VDâ data that were considered suitable, in the absence of a VDss

value or of available mean concentration vs time plots. Finally, in
a few cases, the VDss values were calculated from reported
pharmacokinetic micro-constants using known PK relationships
such as: VDss ) Vc(1 + k12/k21), whereVc is the volume of the
central (or plasma) compartment andk12 andk21 are the distribution
rate constants for transfer from central to peripheral compartment
and from peripheral to central compartment, respectively.

Computational Approach. The structure of each molecule was
obtained from the Derwent World Drug Index (WDI) database and
converted into 3D format using the Tripos implementation of
Concord 5.1.1. For each molecule in the dataset, we calculated a
number of physical properties that have been shown to be important

in influencing the effectiveness of drug-like compounds. Three of
the Lipinski properties (molecular weight and number of hydrogen
bond donors and acceptors) were calculated via in-house software.
CPSA terms were calculated using SAVOL2,15 and the ClogP
values were calculated using version 4.1 of the well-known package
(BioByte, Claremont, CA). The LogD, LogP and pKa values were
calculated using the ACDLabs v.8.0 (ACD/Labs, Toronto, Canada).
Additional information indices, describing the molecular connectiv-
ity, shape, and E-states of the molecules were calculated using
the Tripos implementation of Molconn-Z (Sybyl, v 7.0, Tripos,
St. Louis, MO). The public ISIS keys were also used to break down
each of the molecules into their respective fragments, allowing us
to probe for functionality that might influence the drugs volume of
distribution values. These keys represent the presence or absence
of the functionality described, while the “rules” based on SMARTS
strings developed in-house by Dr. M. Tu (Pfizer, Groton) are counts
of actual occurrence of the fragment represented. The PEOE charges
were computed using MOE v. 2004.3,16 and, finally, the calcula-
tion of the INTHB descriptor, representing the propensity for
internal hydrogen bonding was performed via an algorithm
developed in-house. In all, 1149 descriptors were generated for each
molecule.

Statistical Methods.Simulated annealing17 was used to search
for subsets of descriptors useful in modeling VDss. The simulated
annealing algorithm initially selected a random subset of 20
descriptors. The fitness measure of the subset was the training set
root-mean-square error based on a linear regression (MLR). The
descriptor set was perturbed, by replacing a single descriptor with
another descriptor, and a new fitness value calculated. The fitness
values were compared to determine if the fitness measure had
improved. If the fitness measure improved, the new descriptor subset
was accepted and the iterative process continued. If the fitness
measure did not improve, the acceptance of the new descriptor
subset was based on a Boltzmann probability distribution to allow
escape from local minima. As the number of iterations increased,
the probability of accepting a detrimental step decreased.

Mixture Discriminant Analysis18 is an extension of Linear
Discriminant Analysis (LDA). In LDA, a new compound is
predicted to be a member of the “nearest” class, where the distance
is based on assuming a normal distribution for the descriptors, and
for which it is assumed that the variability and correlation among
the descriptors is the same in each class. MDA is one of several
extensions to LDA, in which we allow multiple normal distributions
or “prototypes” within each class.

Random Forests19,20 is a tree-based method, which comprises
two key components. First, multiple trees are generated using
bootstrap resampling of the data, and the predictions from the
individual trees are averaged to obtain a single prediction for each
compound. Within each tree, and for each individual node of the
tree, random subsets of the predictors are chosen, from which the
single best predictor is chosen on which to split that node. We
constructed MDA and Random Forest models using R statistical
packages21 (v1.9.1) with their default model tuning parameters.

Leave-Class-Out Approach. To test the methods for its
performance on particular classes of analogues, we identified several
classes of structurally similar compounds, and for each leave-class-
out analysis we generated two new 500-tree models, keeping, in
turn, each class out of the training set. The predictive power of
each model, on the class not included in its generation, was then
assessed. We limited the approach to a few classes for which we
had a reasonable number of analogues, and the results are presented
and discussed in the Results and Discussion section.
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coefficients for the parameters used and complete statistics.
Complete list of VD data and computed parameters for the training
set compounds. This material is available free of charge via the
Internet at http://pubs.acs.org.
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